Thermoacoustic Electric Generation

P. Lotton, G. Poignand, G. Penelet, C. Olivier
Laboratoire d'Acoustique de l'Université du Maine
LAUM UMR 6613
Avenue Olivier Messiaen, 72085 Le Mans Cedex 09, France
Le Mans City
Laboratoire d’Acoustique de l’Université du Maine

UMR CNRS 6613
Outlines

- Introduction
- Theory
- Some realizations
- Future development
Thermoacoustic Engine

Introduction
Thermo-acousto-mechanical device

- Stack of plates
- Heat exchanger
- Acoustical Resonator
- Mechanical Resonator
- Mechanical work
- Heat source
- Acoustic work

Symbols:
- \(Q_h \)
- \(Q_c \)
- \(w_{ac} \)
Thermo-acousto-mechanico-electrical device

- Heat source
- Acoustic work
- Mechanical work
- Transduction
- Electricity

Symbols:
- Q_h
- Q_c
- w_{ac}
Different architectures

Heat source

\[Q_h \]

\[W_{ac} \]

Transduction

Electricity

\[Q_c \]
Different architectures

Heat source

- Solar dish
- Waste heat
- Biomass
-
Different architectures

Introduction

Resonator

Standing wave thermoacoustic engine

- p and v are out of phase + stack

\[L_{\text{resonator}} \sim \frac{\lambda}{2} \]
Different architectures

Introduction

Resonator

Standing wave thermoacoustic engine

- p and v are out of phase + stack

$\text{L}_{\text{resonator}} \sim \lambda/2$

Travelling wave thermoacoustic engine

- p and v are in phase + regenerator

$\text{L}_{\text{loop}} \sim \lambda$

$\text{L}_{\text{resonator}} \sim \lambda/2$
Different architectures

Introduction

Electro-mechanical transducer
Different architectures

Introduction

Electro-mechanical transducer

Piezoelectric sensors

Piezoelectric Effect
Different architectures

Introduction

Heat source

Transduction

Electricity

Piezoelectric sensors

Electrodynamic sensors

Qdrive's 1S102M/A linear reciprocating motor/alternator
Different architectures

Introduction

Other stuff

- Gaz
- Stack/regenerator material
- Heat exchangers
-
Outlines

- Introduction
- Theory
- Some realizations
- Future development
Theory: engine design

- Case of traveling-wave loop thermoacoustic device

Analytical theory, but practically: **Use of Delta-EC** (or equivalent software)

Feedback loop

- High acoustic impedance at the entrance of the regenerator
 (minimization of viscous losses)

- **P and v in phase**
 (traveling wave condition)

- Thermal to acoustic efficiency

\[\eta_{ta} = \frac{P_a}{Q_h} \]
Theory: acousto-electric coupling

- Case of a linear alternator, seen as an electrodynamic loudspeaker

Electrical network equivalent to the alternator
Theory: acousto-electric coupling

- Electrical impedance

\[Z_{el}(\omega) = R_e + j\omega L_e + R_L \]
Theory : acousto-electric coupling

- Electrical impedance

\[Z_{el}(\omega) = R_e + j\omega L_e + R_L \]

- Mechanical impedance

\[Z_m(\omega) = R_m + j\omega M_m - j\frac{K_m}{\omega} \]
Theory : acousto-electric coupling

- Electrical impedance

$$Z_{el}(\omega) = R_e + j\omega L_e + R_L$$

- Mechanical impedance

$$Z_m(\omega) = R_m + j\omega M_m - j\frac{K_m}{\omega}$$

- Electrical current flowing through the loading resistor R_L

$$I(\omega) = F(\omega) \left[\frac{Bl}{Z_e(\omega)Z_m(\omega) + Bl^2} \right] = p(\omega) \cdot S \left[\frac{Bl}{Z_e(\omega)Z_m(\omega) + Bl^2} \right]$$
Theory: acousto-electric coupling

- Electric power dissipated in resistor R_L

$$P_e(\omega) = \frac{1}{2} \Re \{ I \cdot U^* \} = \frac{1}{2} |I(\omega)|^2 R_L = \frac{1}{2} |p(\omega)|^2 S^2 R_L \left| \frac{Bl}{Z_m(\omega) \cdot Z_{el}(\omega) + Bl^2} \right|^2$$

- Input acoustic power

$$P_a = \frac{1}{2} \Re \{ p \cdot w^* \} = \frac{1}{2} \Re \left\{ p \cdot \frac{p^*}{Z_a^*} \right\} = \frac{1}{2} |p|^2 \Re \{ \frac{1}{Z_a} \} = \frac{1}{2} |p(\omega)|^2 S^2 \cdot \Re \left\{ \frac{Z_{el}(\omega)}{Z_m(\omega) \cdot Z_{el}(\omega) + Bl^2} \right\}$$

$$\eta = \frac{P_e(\omega)}{P_a(\omega)} = \frac{R_L \left| \frac{Bl}{Z_m(\omega) \cdot Z_{el}(\omega) + Bl^2} \right|^2}{\Re \left\{ \frac{Z_{el}(\omega)}{Z_m(\omega) \cdot Z_{el}(\omega) + Bl^2} \right\}}$$
Theory : acousto-electric coupling

- Acoustic to electrical efficiency

$$\eta = \frac{P_e(\omega)}{P_a(\omega)} = \frac{R_L \left| \frac{Bl}{Z_m(\omega) \cdot Z_{el}(\omega) + Bl^2} \right|^2}{\Re \left\{ \frac{Z_{el}(\omega)}{Z_m(\omega) \cdot Z_{el}(\omega) + Bl^2} \right\}}$$

- If $L_e \omega << R_e$, then $R_{el} \approx R_e + R_L$

- If $\omega = \omega_r$, then $Z_m = R_m$

$$\eta = \frac{Bl^2 R_L}{R_m \cdot (R_L + R_e)^2 + Bl^2 \cdot (R_L + R_e)}$$
Thermoelectric coupling

- Thermal to electrical efficiency
 \[\eta_{\text{te}} = \frac{P_e}{Q_h} \]

- Not so easy to predict from separate study of each part of the device
- Strong coupling between thermoacoustic resonator and alternator

The device has to be designed as a whole
Outlines

- Introduction
- Theory
- Some realizations (non-exhaustive)
- Future development
Standing waves devices

Standing waves devices

Huelsz et al., Magneto-hydro-dynamical transduction, 2006
Standing waves devices

Huelsz et al., Magneto-hydro-dynamical transduction, 2006

Application: Diesel truck waste heat recovery
Standing waves devices

Last development in Energy harvesting
Smoker et al., Nouh et al., 2012 - 2014

- Input heating power : $Q_h = 40$ W
- Output electric power : $P_{el} = 0.12$ mW
- Acoustic to electric efficiency : $\eta_{ae} \approx 10\%$
- Global efficiency : $\eta \approx 3 \times 10^{-4}\%$

Low efficiency, but can be miniaturized and distributed

- **Still in progress...**
Traveling waves devices

S. Backhaus et al., Los Alamos Lab., 2004

- **Fluide**: He, 55 Bar
- **Volume**:
 \[V_{cavarr} = 0.01 \text{ l} \]
 \[V_{tot} > 2 \text{ l} \]
- **Performance**:
 \[f \approx 120 \text{ Hz} \]
 \[T_h \approx 600 \text{ °C} \]
 \[Q_h < 400 \text{ W} \]
 \[Q_{el\text{max}} \approx 58 \text{ W} \]
 \[\eta_{\text{max}} \approx 18 \% \]
Traveling waves devices

Yu et al., Score project, 2012

Low cost electricity generator for rural area driven by biomass

- Fluid : air, 1 Bar
- Volume:
 - $L \approx 4.25 \text{ m}$, $R = 2.7 \times 6.4 \text{ cm}$
 - $V_{tot} > 10 \text{ l}$
- Performance:
 - $f \approx 70 \text{ Hz}$
 - $T_h \approx 120 \degree C$
 - $Q_h < 500 \text{ W}$
 - $Q_{el_{max}} \approx 11.6 \text{ W}$
 - $\eta_{max} \approx 3 \%$

Classical loudspeaker set in the loop
Traveling waves devices

Hekyom, 2011: Demonstrator of thermoacoustic electricity generator

- $P_{el} = 800 \text{ W}$
- $T_h = 950 \text{ °C}$

2 Q-Drive transducers

Electric feedback loop

- For more information, ask M. X. FRANCOIS
Traveling waves devices

Research Program of China, 2010 – 2014, Sun et al., Wu et al.

Thermoacoustic electric generator coupled to a solar dish

- Fluid: He (95.5%) Ar (4.5%), 40 Bar
- Performance:
 - $f = 64$ Hz
 - $T_h = 650$ °C
 - $P_{el\ max} \approx 1040\ W\ (*)$
 - $\eta_{max} \approx 19.8\%\ (*)$

* In lab conditions
Traveling waves devices

Qnergy, TASE-3 project, 2014

Produces 1 kW of electrical power during solar operation

Qnergy's TASE-3 thermoacoustic Stirling engine during operation at the company's test facility in Ogden, Utah.
Traveling waves devices

Research Program of China, 2014, Wu et al.

3 kW double-acting thermoacoustic Stirling electric generator

- **Fluide :** He 50 Bar
- **Performance :**
 - $f = 86\, \text{Hz}$
 - $T_h = 650\, \text{°C}$
 - $P_{\text{el max}} \approx 1570\, \text{W}$
 - $\eta_{\text{max}} \approx 16.8\%$
Outlines

- Introduction
- Theory
- Some realizations
- Future development
Future development

Key points

- Heat exchangers
- Alternators
- Thermoacoustic process
Future development

$P_e (W)$

years

Future development
Future development

$P_e (W)$

years

500 1000 1500
Other alternators?

Thermo Acoustic Power Program, ASTER, K. de Block, 2013

- For more information, ask K. de Block
Other alternators?

MHD Electric Generator, A. Alemany et al., 2010

- For more information, see presentation of A. Alemany
Thermoacoustic process optimization

- Control of non-linear effects
 - For example: Acoustic streaming

- For more information, see presentation of H. Bailliet
Thermoacoustic process optimization

- Active tuning of acoustic oscillations in a thermo-acoustic power generator

Work in progress at « Laboratoire d’Acoustique de l’Université du Maine » (LAUM)

Thermoacoustic process optimization

- Active tuning of acoustic oscillations in a thermo-acoustic power generator

- **Thermoacoustic core:**
 - Ambiant heat exchanger
 - Regenerator
 - Hot heat exchanger
 - Thermal buffer tube
 - Ambiant heat exchanger

- **Fluid:** air
- **Static pressure:** 5 Bars
- **Ambient temperature:** 295 K

- **Frequency:** 40 Hz
- **Onset condition:** $Q_h = 60 \text{ W}, \Delta T = 401 \text{ K}$
- **Above onset:** $Q_h = 70 \text{ W}, \text{DR} = 1\%, \eta_\varnothing = 0.24\%, \Delta T_\varnothing = 407.7 \text{ K}$
 - $Q_h = 140 \text{ W}, \text{DR} = 3.2\%, \eta_\varnothing = 0.71\%, \Delta T_\varnothing = 452 \text{ K}$

- **Low efficiency:** engine = study model (modular, limited budget, low efficiency alternator) but designed to work close to its maximum value.
Thermoacoustic process optimization

- Experimental results: case with internal auxiliary source

\[
\eta = \frac{W_{el} (G=0) + \Delta W_{el}}{Q_h + W_{ls}}
\]

- Efficiency \(\eta \) versus \(\phi \) for different \(G \)

\[Q_h = 70 \text{ W}, \ G = 0 (-), 10 (-), 40 (\Diamond), 70 (+), 135 (\Box) \text{ or } 190(\circ), \text{ without active control} (--)\]
Thermoacoustic process optimization

- Efficiency η versus G for $\phi = \phi_{\text{optimal}}$

$Q_h = 70 \text{ W (o)}, 100\text{ W (o)},$ without active control (..)

- ΔW_{el} (o) : additional power produced
- W_{ls} (•) : power supplied to the auxiliary source
Thermoacoustic process optimization

- Active control applied on a high power thermoacoustic compact engine (currently being built at LAUM)

- Fluid: helium
- Static pressure: 22 Bars
- Heat input: 1000 W
- Efficiency (theoretical): 20%
- Electric power: 200 W

- Alternator: Qdrive 1S 132D

Work in progress ...
Thank you for your attention...